Selasa, 28 Mei 2013

Tugas 1


SOAL

1.     1.   Suatu zat makanan di tetesi dengan larutan iodin menimbulkan warna biru.senyawa apakahyang terkandung dalam zat makanan tersebut?
2.    2 .   Bagai mana cara membedakan amilum dengan glikogen di laboratorium?
3.    3.    Mengapa selulosa tidak dapat di cerna dalam tubuh?
4.    4.    Apakah perbedaan dan persamaan dari AMILUM, GLIKOGEN,dan SELULOSA???
5.   5.      Sebutkan sumber bahan yang mengandung:
·         Amilum
·         Glikogen
·         Selulosa
6.    6 .    Jelaskan perbedaan amilosa dan amilopeptin?
7.    7 .  Apakah hasil hidrolisis sempurna dari amilum glikogen dan selulosa?
8.    8.    Polisakarida (amilum,glikogen, dan selulosa ) merupakan polimer. Tergolong polimer apakah ketiga polisakarida tersebut bila                              di tinjau dari :
·         Asalnya
·         Reaksi polimerisasinya
·         Jenis monomernya
9.    9.    Apakah kegunaan polisakarida berikut ini :
·         Amilum
·         Selulosa

Jawab
1.     1.   Amilum (pati)

2.      2.  Yaitu dengan cara menetesi iodium, apabila memberi warna biru berartia amilum tetapi bila memberi warna merah berarti glikogen

3.      3.  Karena di dalam tubuh tidak terdapat ENZIM untuk memecah selulosa

4.       4. Persamaan :  ketiganya polisakarida golongan D-glukosa ,rumus molekul sama dan rantai                                                                          polimer

Perbedaan :
·         a. Amilum (Pati) 
Amilum (pati) merupakan sumber karbohidrat yang paling penting yang terbentuk dari proses fotosintesis tumbuhan.  Sifat-sifat amilum (pati) adalah sebagai berikut. 
1. Pati tidak larut dalam air dan memberi warna biru dengan larutan iodium. 
2. Pati terdiri atas dua bagian, bagian yang lurus disebut amilosa dan bagian yang bercabang disebut amilopektin. 
3. Tidak dapat mereduksi pereaksi fehling. 
4. Hidrolisis pati dengan asam encer menghasilkan glukosa. Pada hidrolisis pati terjadi zat antara yaitu dekstrin. Dekstrin masih merupakan polisakarida dan digunakan untuk perekat. Dekstrin dengan iodium memberikan warna merah.  

·         b. Glikogen 
Glikogen adalah polisakarida yang disimpan dalam tubuh hewan (dalam hati) sebagai cadangan karbohidrat. 
Sifat-sifat glikogen adalah sebagai berikut. 
1. Glikogen disebut juga pati hewan yang tidak larut dalam air dengan iodium memberi warna merah. 2. Pada hidrolisis dengan enzim amilosa (dari pankreas) terurai menjadi maltosa dan kemudian menjadi glukosa. 
3. Tidak dapat mereduksi pereaksi fehling.  

·         c. Selulosa 
Selulosa merupakan polisakarida penyusun dinding sel tumbuhtumbuhan. Kapas sebagian besar terdiri atas selulosa. 
Sifat-sifat selulosa: 
1. Selulosa tidak larut dalam air, tetapi larut dalam pereaksi Scheitzer, yaitu larutan tetramino tembaga (II) hidroksida. 
2. Selulosa tidak dapat dicerna oleh manusia tetapi dapat dicerna oleh sapi dan hewan lain dengan bantuan bakteri. Dengan asam encer dapat terhidrolisis menjadi glukosa. 
3. Dengan HNO3 pekat dan H2SO4 pekat terjadi selulosa nitrat yang digunakan untuk pembuatan film dan cat semprot. Kegunaan selulosa yang penting adalah untuk rayon dan kertas. Polisakarida yang lain adalahinulin pada pati dahlia dan kitin pada invertebrata.

5.     5 .     -  Amilum atau pati terdapat pada umbi, daun, batang, dan biji-bijian
   -  Glikogen terdapat pada otot hewan dan manusia
   -  selulosa terdapat pada tumbuhan

6.        6      Amilosa merupakan polisakarida berantai lurus bagian dari butir-butir pati yang terdiri atas molekul-molekul  glukosa -1,4-glikosidik . Amilosa merupakan bagian dari pati yang larut dalam air, yang mempunyai berat molekul antara 50.000-200.000, dan bila ditambah dengan iodium akan memberikan warna biru.   sedangkan
        Amilopektin merupakan polisakarida bercabang bagian dari pati, terdiri  atas molekul-molekul glukosa yang terikat satu sama lain melalui ikatan 1,4-glikosidik  dengan percabangan melalui ikatan 1,6-glikosidik pada setiap 20-25 unit molekul glukosa. Amilopektin merupakan bagian dari pati yang tidak larut dalam air dan mempunyai   berat molekul antara 70.000 sampai satu juta. Amilopektin dengan iodium memberikan warna ungu hingga merah .

7.   7.     – hidrolisis amilum menghasilkan Glukosa
  – hidrolisis glikogen menghasilkan Maltosa kemudian menjadi glukosa
  – hidrolisis selulosa menghasilkan glukosa

8.    8.    – asalnya : terdapat/termasuk polimer atom
  – reaksi : polimerisasi
  – jenis monomernya : homopolisakarida (satu jenis monomer)

9.    9.    Fungsi amilum
        Pati digunakan sebagai bahan yang digunakan untuk memekatkan makanan cair seperti sup dan sebagainya. Dalam industri, pati dipakai sebagai komponen perekat, campuran kertas dan tekstil, dan pada industri kosmetika.

Fungsi selulosa
Fungsi dasar selulosa adalah untuk menjaga struktur dan kekakuan bagi tanaman. Selulosa bertindak sebagai kerangka untuk memungkinkan tanaman untuk menahan kekuatan mereka dalam berbagai bentuk dan ukuran yang berbeda. Itulah sebabnya dinding sel tanaman kaku dan tidak dapat berubah-berubah bentuk..

Selasa, 21 Mei 2013

TUGAS 3 KIMIA ORGANIK




TUGAS 3

1. Bagaimanakah cara mengidentifikasi adanya protein dalam bahan makanan?
Uji biuret adalah salah satu cara pengujian yang memberikan hasil positif pada senyawa-senyawa yang memiliki ikatan peptida. Pengujiannya dapat dilakukan dengan cara : larutan yang mengandung protein ditetesi larutan NaOH, kemudian diberi beberapa tetes larutan CuSO4 encer. Terbetuknya warna ungu, menunjukkan hasil positif adanya protein.

2. Apakah yang dimaksud glikoprotein? Berikan contohnya!
Glikoprotein adalah suatu protein yang mengandung rantai oligosakarida yang mengikatglikan dengan ikatan kovalen pada rantai polipeptida bagian samping.
Contoh: Ditemukan dalam berbagai situasi yang berbeda di dalam cairan dan jaringan, termasuk membran sel.

  3. Apakah yang dimaksud denaturasi protein? Sebutkan hal-hal yang menyebabkan terjadinya denaturasi protein!
Denaturasi adalah sebuah proses di mana protein atau asam nukleat kehilangan struktur tersier dan struktur sekunder dengan penerapan beberapa tekanan eksternal atau senyawa, seperti asam kuat atau basa, garam anorganik terkonsentrasi, sebuah misalnya pelarut organik (cth, alkohol atau kloroform), atau panas.
Hal-hal yang menyebabkan terjadinya denaturasi protein:
·  Suhu yang tinggi (panas)
·  Pengaruh asam (perubahan pH yang ekstrim)
·  Pelarut organik, zat kimia tertentu, urea, detergen (pengaruh basa)
·  Pengaruh garam
·  Karena pengaruh mekanik (goncangan)

      3. Mengapa protein yang mengalami denaturasi menjadi kehilangan fungsi biologisnya?
Sebagai Contoh “Telur yang dipanaskan”, baik digoreng maupun direbus, memang akan mengalami perubahan fase, dari cair menjadi padat. Perubahan ini terjadi akibat suhu tinggi saat memasak daoat mengacaukan ikatan hidrogen dan memicu interaksi hidrofobik (interaksi menolak air) dalam telur. Hal ini membuat molekul penyusun protein telur.
Nah, karena sebagian protein menjadi rusak, maka protein telur mengalami perubahan struktur (disebut denaturasi protrin) dan mengalami pengendapan, sehingga jadilah telur yang dimasak itu menjadi padat. Selain itu, kebanyakan protein akan kehilangan fungsi biologisnya ketika mengalami denaturasi. Oleh karen itu, ketika kita memasak telur, usahakan tidak memanaskannya dengan suhu terlalu tinggi, karen dapat menghilangkan fungsi proteinnya.

4. Apakah urea CO(NH2)2 menunjukkan uji yang positif terhadap uji biuret?
Urea bukan merupakan protein, namun karena urea mengandung gugus –NH2 (amin) yang mempunyai kesamaan dengan gugus protein sehingga membentuk warna ungu sebagai hasil reaksi antara Cu2+ dengan –NH. Oleh karena itu urea memberikan hasil positif pada uji biuret. Pada pemanasan urea terbentuk gelembung gas dan mengeluarkan bau ammonia yang sangat menyengat.

5. Apakah yang dimaksud struktur kuarterner protein?
Struktur kuarterner adalah gambaran dari pengaturan sub-unit atau promoter protein dalam ruang. Struktur ini memiliki dua atau lebih dari sub-unit protein dengan struktur tersier yang akan membentuk protein kompleks yang fungsional. ikatan yang berperan dalam struktur ini adalah ikatan nonkovalen, yakni interaksi elektrostatis, hidrogen, dan hidrofobik. Protein dengan struktur kuarterner sering disebut juga dengan protein multimerik. Jika protein yang tersusun dari dua sub-unit disebut dengan protein dimerik dan jika tersusun dari empat sub-unit disebut dengan protein tetramerik.






7.  Suatu Sampel ditetesi larutan NaOH, Kemudian Larutan tembaga(II) sulfat yang encer menghasilkan warna ungu. Bila sampel dipanaskan dengan HNO3 pekat kemudian dibuat alkalis dengan NaOH terjadi warna jingga. Apakah yang dapat anda simpulkan dari Uji di Atas?

Pada sampel terkandung protein dengan adanya ikatan peptida yang positif dari uji biuret dan adanya fenil (Cincin Benzene) yang positif uji Xantoproteat.
8.  Suatu sampel memberi hasil yang positif terhadap uji ninhidrin dan biuret tetapi negatif terhadap penambahan larutan NaOH dan Pb(NO3)2. Kesimpulan apakah yang dapat diperoleh dari fakta tersebut?
Pada sampel terdapat protein dengan adanya asam amino bebas dari uji ninhidrin (+) dan adanya ikatan peptida dari uji biuret (+) tetapi sampel tidakmengandung PbS karena uji belerang yang negatif (-).

9.   Apakah yang dimaksud dengan enzim? Berikan contohnya!
Enzim adalah biomolekul berupa protein yang berfungsi sebagai katalis (senyawa yang mempercepat proses reaksi tanpa habis bereaksi) dalam suatu reaksi kimia organik.
Contoh: -. Amilase :Berfungsi memecah pati atau glikogen.
                    -. Invertase: Menghidrolisis sukrosa pada gula bukan pereduksi
                    -. Enzim pektin

10. Bila 20 molekul glisin berpolimerisasi membentuk polipeptida. Berapakah massa molekul relatif polipeptida yang terbentuk? Ar H = 1, C = 12, N = 14, O = 16).
 

Mr Glysine = 75 g/mol
Jadi, 20 molekul glysine = 20 x 75 g/mol
                                                 = 1500 g/mol


Pada sampel terkandung protein dengan adanya ikatan peptida yang positif dari uji biuret dan adanya fenil (Cincin Benzene) yang positif uji Xantoproteat.


Pada sampel terdapat protein dengan adanya asam amino bebas dari uji ninhidrin (+) dan adanya ikatan peptida dari uji biuret (+) tetapi sampel tidakmengandung PbS karena uji belerang yang negatif (-).

ASAM AMINO


TUGAS 2
A. PENGERTIAN
    
      Asam amino adalah sembarang senyawa organik yang memiliki gugus fungsional karboksil (-COOH) danamina (biasanya -NH2). Dalam biokimia seringkali pengertiannya dipersempit: keduanya terikat pada satu atom karbon (C) yang sama (disebut atom C "alfa" atau α). Gugus karboksil memberikan sifat asam dan gugus amina memberikan sifat basa. Dalam bentuk larutan, asam amino bersifat amfoterik: cenderung menjadi asam pada larutan basa dan menjadi basa pada larutan asam. Perilaku ini terjadi karena asam amino mampu menjadi zwitter-ion. Asam amino termasuk golongan senyawa yang paling banyak dipelajari karena salah satu fungsinya sangat penting dalam organisme, yaitu sebagai penyusun protein.
1.  STRUKTUR ASAM AMINO
      Struktur asam amino secara umum adalah satu atom C yang mengikat empat gugus: gugus amina (NH2), gugus karboksil (COOH), atom hidrogen (H), dan satu gugus sisa (R, dari residue) atau disebut juga gugus atau rantai samping yang membedakan satu asam amino dengan asam amino lainnya.Atom C pusat tersebut dinamai atom Cα ("C-alfa") sesuai dengan penamaan senyawa bergugus karboksil, yaitu atom C yang berikatan langsung dengan gugus karboksil. Oleh karena gugus amina juga terikat pada atom Cα ini, senyawa tersebut merupakan asam α-amino.Asam amino biasanya diklasifikasikan berdasarkan sifat kimia rantai samping tersebut menjadi empat kelompok. Rantai samping dapat membuat asam amino bersifat asam lemah, basa lemah, hidrofilik jika polar, dan hidrofobik jika nonpolar.
  B.ASAM AMINO ESSENSIAL DAN NON-ESSENSIAL       Asam amino esensial
Dari sekitar dua puluhan asam amino yang kita kenal, sekitar sepuluh macam tidak bisa dibentuk oleh tubuh manusia dan harus didatangkan dari asupan makanan. Itulah yang disebut asam amino esensial, sering juga disebut asam amino indispensable. Asam amino esensial ini diperlukan untuk pertumbuhan tubuh. Jika kekurangan kelompok asam amino ini akan menderita busung lapar (kwashiorkor). Berbeda denganlemak atau karbohidrat yang bisa disimpan, tubuh kita tidak dapat menyimpan asam amino. Itu sebabnya asupan asam amino yang cukup dari makanan selalu diperlukan setiap hari.Sebenarnya dari beberapa jenis asam amino esensial seperti arginin dapat dibuat oleh tubuh, tetapi prosesnya sangat lambat dan tidak mencukupi untuk seluruh kebutuhan. Jadi juga harus disuplai dari makanan. Selain itu beberapa jenis asam amino juga berfungsi saling melengkapi satu sama lain. Contohnya metionin diperlukan untuk memproduksi cystein, atau fenilalanin diperlukan untuk membentuk tirosin.
 Berikut ini adalah daftar asam amino esensial.
1. Leucine (BCAA = Branched-Chain Amino Acids = Asam amino dengan rantai bercabang)
- Membantu mencegah penyusutan otot
- Membantu pemulihan pada kulit dan tulang
2. Isoleucine (BCAA = Branched-Chain Amino Acids = Asam amino dengan rantai bercabang)
- Membantu mencegah penyusutan otot
- Membantu dalam pembentukan sel darah merah
3. Valine (BCAA = Branched-Chain Amino Acids = Asam amino dengan rantai bercabang)
- Tidak diproses di organ hati, dan lebih langsung diserap oleh otot
- Membantu dalam mengirimkan asam amino lain (tryptophan, phenylalanine, tyrosine) ke otak
4. Lycine
- Kekurangan lycine akan mempengaruhi pembuatan protein pada otot dan jaringan penghubugn lainnya
- Bersama dengan Vitamin C membentuk L-Carnitine
- Membantu dalam pembentukan kolagen maupun jaringan penghubung tubuh lainnya (cartilage dan persendian)
5. Tyyptophan
- Pemicu serotonin (hormon yang memiliki efek relaksasi)
- Merangsang pelepasan hormon pertumbuhan
6. Methionine
- Prekusor dari cysteine dan creatine
- Menurunkan kadar kolestrol darah
- Membantu membuang zat racun pada organ hati dan membantuk regenerasi jaringan baru pada hati dan ginjal
7. Threonine
- Salah satu asam amino yang membantu detoksifikasi
- Membantu pencegahan penumpukan lemak pada organ hati
- Komponen penting dari kolagen
- Biasanya kekurangannya diderita oleh vegetarian
8. Phenylalanine
- Prekursor untuk tyrosine
- Meningkatkan daya ingat, mood, fokus mental
- Digunakan dalam terapi depresi
- Membantuk menekan nafsu makan
Asam amino non esensial
Ada sepuluh asam amino yang bisa dibentuk oleh tubuh manusia, dan disebut asam amino non esensial atau asam amino dispensable. Karena bisa dibentuk sendiri oleh tubuh maka tidak harus memperoleh asupan dari makanan.
Berikut ini adalah daftar asam amino non esensial.
1. Aspartic Acid
- Membantu mengubah karbohidrat menjadi energy
- Membangun daya tahan tubuh melalui immunoglobulin dan antibodi
- Meredakan tingkat ammonia dalam darah setelah latihan
2. Glyicine
- Membantu tubuh membentuk asam amino lain
- Merupakan bagian dari sel darah merah dan cytochrome (enzim yang terlibat dalam produksi energi)
- Memproduksi glucagon yang mengaktifkan glikogen
- Berpotensi menghambat keinginan akan gula
3. Alanine
- Membantu tubuh mengembangkan daya tahan
- Merupakan salah satu kunci dari siklus glukosa alanine yang memungkinkan otot dan jaringan lain untuk mendapatkan energi dari asam amino
4. Serine
- Diperlukan untuk memproduksi energi pada tingkat sel
- Membantuk dalam fungsi otak (daya ingat) dan syaraf

C.KELOMPOK FUNGSI ASAM AMINO     Asam Amino memiliki dua kelompok fungsi yaitu amino grup dan karboksil grup yang saling berhadapan, dimana keduanya terikat pada atom karbon yang sama. Lihat gambar di bawah ini.amino acids Daftar lengkap asam amino esensial dan non esensial

Jumat, 22 Maret 2013

Monosakarida



Monosakarida merupakan sakarida sederhana yang tidak dapat dihidrolisis menjadi satuan terkecil walaupun dalam suasana yang lunak sekalipun. Monosakarida paling sederhana adalah gliseraldehid atau aldotriosa dan isomerinya adalah dihidroksiaseton atau ketotriosa perhatikan Bagan 14.6. Kedua senyawa tersebut merupakan suatu triosa karena mengandung tiga atom karbon. Jadi suatu monosakarida, tidak hanya dapat dibedakan berdasarkan gugus-gugus fungsionalnya melainkan juga dari jumlah atom karbonnya.
bagan 14.6
Bagan 14.6. Monosakarida sederhana aldotriosa dan ketotriosa
Monosakarida yang paling banyak ditemukan dalam tubuh organisme adalah monosakarida yang dibangun dengan 6 (enam) atom C yang dikenal sebagai Glukosa. Pada molekul ini terdapat lima gugus hidroksil dan satu gugus aldehid yang terikat pada atom karbon. Glukosa memiliki dua isomer yaitu manosa dan Galaktosa, perbedaan antara Glukosa dengan Manosa terletak pada gugus hidroksi pada atom C nomor 2. Demikian pula halnya perbedaan antara Glukosa dan Galaktosa terletak pada gugus hidroksinya, gugus OH disebelah kanan untuk galaktosa sedangkan glukosa terletak disebelah kiri, untuk lebih jelasnya perhatikan Bagan 14.7.
bagan 14.7
Bagan14.7. Rumus bangun senyawa D-Glukosa, D-Manosa dan D-Galaktosa
Glukosa dengan rumus molekul C6H12O6, adalah monosakarida yang mengandung enam atom karbon. Glukosa merupakan polihidroksi aldehida (memiliki gugus CHO). Lima karbon dan satu oksigennya membentuk siklik yang disebut “cincin piranosa”, bentuk siklik ini paling stabil untuk aldosa beratom karbon enam.
Dalam cincin piranosa, atom karbon mengikat gugus samping hidroksil dan hidrogen kecuali untuk atom C no.5, yang terikat pada gugus CH2OH sebagai atom karbon nomor 6. Struktur cincin ini berada dalam kesetimbangan pada pH 7, struktur D-Glukosa dalam bentuk cincin piranosa ditunjukan pada Gambar 14.8. Selain memiliki isomer, Glukosa juga memiliki enansiomer yaitu isomer cermin terhadap dirinya yaitu D-glukosa dan L-glukosa. Namun kenyataannya yang ditemukan pada organisme, hanya yang dalam bentuk D-isomer. Dalam bentuk rantai lurus kita dapat dengan mudah membedakan Bentuk D atau L konformasi isomer pada karbon nomor 5 atau pada atom C asimetris. Notasi D berasal dari kata Dextro berarti kanan, dan notasi L berarti levo atau kiri, sebagai penanda digunakan gugus hidroksilnya.
gambar 14.8
Gambar 14.8. Bentuk cincin piranosa senyawa D-Glukosa
Sedangkan pada cincin piranosa juga memiliki dua bentuk yang khas, yaitu posisi dari gugus hidroksil pada atom karbon pertama. Jika gugus hidroksil berposisi di bawah hidrogennya, maka disebut dengan bentuk α (alfa). Demikianpula sebaliknya jika gugus hidroksilnya berposisi di atas hidrogennya, disebut dengan bentuk β (beta), perhatikan Gambar 14.9 dan Gambar 14.10. Glukosa di dalam air akan membentuk keseimbangan dalam dua bentuk, yaitu bentuk α -D–Glukosa dan β -D–Glukosa, dengan komposisi 36 : 64. Proses perubahan dari α -D–Glukosa ke β -D–Glukosa atau sebaliknya disebut dengan disebut mutarotasi.
gambar 14.9
Gambar 14.9. α–D–Glukosa
gambar 14.10
Gambar 14.10. β–D–Glukosa
Glukosa merupakan sumber tenaga utama bagi makhluk hidup. Glukosa diserap ke dalam peredaran darah melalui saluran pencernaan. Sebagian glukosa ini kemudian langsung menjadi bahan bakar sel otak, sedangkan yang lainnya menuju hati dan otot, yang menyimpannya sebagai glikogen.
Glikogen merupakan sumber energi cadangan yang akan dikonversi kembali menjadi glukosa pada saat dibutuhkan kembali. Perombakan karbohidrat yang menghasilkan bentuk lain selain glukosa seperti: fruktosa dan galaktosa, akan diangkut ke hati, dandikonversi atau diubah menjadi glukosa. Fruktosa merupakan monosakarida yang memiliki enam atom karbon merupakan isomer dari glukosa, namun memiliki gugus aldehid. Fruktosa terasa lebih manis dari glukosa dan banyak terdapat dalam buahbuahan. Untuk membedakan struktur molekul glukosa dengan fruktosa, dapat mencermati Bagan 14.11.
gambar 14.11
Bagan 14.11. Fruktosa
Glukosa juga memiliki keunggulan yaitu tidak mudah bereaksi secara nonspesifik dengan gugus amino suatu protein dengan cara mereduksinya. Reaksi ini dikenal dengan glikosilasi yang dapat merusak fungsi berbagai enzim. Hal ini disebabkan karena glukosa berada dalam bentuk isomer siklik yang kurang reaktif. Beberapa dampak glikosilasi protein adalah komplikasi akut seperti diabetes, gagal ginjal, dan kerusakan saraf periferal.
Jenis-jenis Monosakarida
1. GlukosaGlukosa adalah salah satu karbohidrat terpenting yang digunakan sebagai sumber tenaga bagi hewan dan tumbuhan. Glukosa merupakan salah satu hasil utama fotosintesis dan awal bagi respirasi. Bentuk alami (D-glukosa) disebut juga dekstrosa, terutama pada industri pangan. Selain dari tumbuhan, glukosa juga dapat di terbentuk:
dalam hati dan otot rangka dari pemecahan simpanan glikogen (polimer glukosa).
dalam hati dan ginjal dari zat antara melalui proses yang disebut glukoneogenesis.
2. FruktosaFruktosa susunan paling sederhana dalam karbohidrat. Sejenis gula yang dimeukan pada madu dan buah-buahan. Fruktosa adalah bentuk isomer glukosa dan merupakan salah satu komponen penyusun sukrosa. Fruktosa mempunyai rumus kimia yang sama dengan glukosa, CH2O, namun memiliki struktur yang berbeda. Susunan atom dalam fruktosa merangsang jonjot kecapan pada lidah sehingga menimbulkan rasa manis. Di dalam tubuh, fruktosa meupakan hasil pemecahan daru sukrosa.
3. GalaktosaGalaktosa juga merupakan gula sederhana yang mempunyai rumus kimia yang sama dengan glukosa dan fruktosa namun memiliki struktur yang berbeda. Galaktosa hampir tidak terdapat bebas dialam. Namun di temukan dalam tubuh makhluk hidup. Galaktosa dalam sistem pencernaan merupakan hasil pemecahan dari laktosa. Dalam otak galaktosa dikenal sebagai serebrosa.
4. ManosaManosa adalah gula aldehida yang dihasilkan dari oksidasi manitol dan memiliki sifat-sifat umum yang serupa dengan glukosa. Manosa, jarang terdapat di dalam makanan. Di gurun pasir, seperti di Israel terdapat di dalam manna yang mereka olah untuk membuat roti.
5. RibosaRibosa adalah gula pentosa yang ditemukan dalam semua sel tumbuhan dan hewan dalam bentuk furanosa. Ribosa merupakan komponen RNA yang digunakan untuk transkripsi genetika. Selain itu Ribosa juga berhubungan erat dengan deoksiribosa, yang merupakan komponen dari DNA. Ribosa juga meupakan komponen dari ATP, NADH, dan beberapa kimia lainnya yang sangat penting bagi metabolisme.
6. XilosaXilosa suatu gula pentosa, yaitu monosakarida dengan lima atom karbon dan memiliki gugus aldehida. Gula ini diperoleh dengan menguraikan jerami atau serat nabati lainnya dengan cara memasaknya dengan asam sulfat encer. Xilosa  berbentuk serbuk hablur tanpa warna yang digunakan dalam penyamakan dan pewarnaan dan dapat juga digunakan sebagai bahan pemanis untuk penderita kencing manis (diabetes mellitus).
7. ArabinosaArabinosa disebut juga gula pektin atau pektinosa. Arabinosa bersumber dari Getah Arab , Plum, dan Getah Ceri , namun tidak memiliki fungsi Fisiologis. Arabinosa berupa kristal putih yang larut dalam air dan gliserol namun tidak larut dalam alkohol dan eter. Arabinosa digunakan dalam obat-obatan dan medium pembiakan bakteri. Arabisa dalam reaksi Orsinol - HCl memberi warna : Violet , Biru , dan Merah , dengan membei Floroglusional- HCl.

Sumber: 
http://www.chem-is-try.org/materi_kimia/kimia-kesehatan/biomolekul/monosakarida/
http://kamusq.blogspot.com/2012/06/jenis-jenis-monosakarida-klasifikasi.html

Gula Pereduksi


gula
Kadar Gula Sebelum Dan Sesudah Inversi (Penentuan Gula Total dan Gula Reduksi) - Gula total merupakan campuran gula reduksi dan non reduksi yang merupakan hasil hidrolisa pati. Semua monosakarida dan disakarida kecuali sukrosa berperan sebagai agensia pereduksi dan karenanya dikenal sebagai gula reduksi. Kemampuan senyawa gula mereduksi agensia pengoksidasi mendasari pelbagai cara pengujian untuk glukosa dan gula-gula reduksi lainnya.  Salah satu cara untuk menentukan gula reduksi dan gula total yaitu dengan metode Nelson-Somogy.

Penentuan gula total dapat ditentukan dengan metode nelson-somogy setelah menghidrolisa ikatan glikosidik dengan asam klorida (suhu 70oC) atau dengan asam kuat suhu tinggi (pemanasan), kemudian larutan sampel yang sudah dinetralkan kembali dianalisis dengan menggunakan reagen Nelson-Somogyi. Jadi, untuk gula total dilakukan hidrolisis terlebih dahulu. Bila bahan hanya mengandung gula pereduksi, maka tidak perlu dilakukan hidrolisis, tetapi dapat langsung dilakukan perhitungan. Sedangkan untuk gula nonpereduksi, gula diubah terlebih dahulu ke dalam bentuk gula pereduksi. Jika terdapat bahan non gula, seperti pati atau karbohidrat lainnya, maka bahan-bahan tersebut harus dihilangkan terlebih dahulu.
Penentuan gula reduksi menggunakan oksidasi dengan cupri dapat menggunakan metode Nelson-Somogy, dengan prinsip bahwa cuprioksida akan bereaksi menjadi cuprooksida karena adanya gula reduksi (endapan merah bata). Jumlah endapan cuprooksida sebanding dengan jumlah gula reduksi. Sifat pereduksi dari senyawa karena adanya gugus aldehid dan keton bebas dapat mereduksi ion-ion logam seperti tembaga (Cu), perak (Ag) dalam larutan basa dengan menggunakan 2 macam reagen Nelson, yang merupakan campuran dari Nelson A (25) dan Nelson B (1). Nelson A merupakan campuran Na2CO3 anhidrat, Na2SO4, K-Na Tartarat dan Na-bikarbonat. Nelson B merupakan campuran CuSO4 dan H2SO4.
Pada kedua macam reagen tersebut yang berfungsi sebagai oksidator adalah cupri oksida yang dengan gula reduksi akan mengalami reduksi menjadi cupro oksida dan mengendap berwarna merah bata.  Cupro oksida kemudian direaksikan dengan arsenomolibdat sehingga membentuk molibdenum yang berwarna biru. Intensitas warna biru diukur dengan spektrofotometer pada panjang gelombang 540 nm. Untuk mengetahui kadar gula reduksi dalam sampel perlu dibuat kurva standar yang menggambarkan hubungan antara konsentrasi gula reduksi dengan OD.
Penentuan gula reduksi dengan menggunakan metode Nelson Somogy dilakukan untuk bahan yang kandungan gula reduksinya sangat sedikit, hal tersebut karena metode Nelson Somogy sangat peka terhadap konsentrasi karbohidrat yang rendah pada bahan.
Selain menggunakan metode Nelson-Somogy penentuan gula reduksi dan gula total dalam larutan yang sering digunakan antara lain :

Cara Munson –Walkerpenentuan gula cara ini adalah dengan menentukan banyaknya kuprooksida yang terbentuk dengan cara penimbangan atau dengan melarutkan kembali dengan asam nitrat kemudian menitrasi dengan tiosulfat. Jumlah kupro oksida yang terbentuk ekuivalen dengan banyaknya gula reduksi yang ada dalam larutan.

Cara Lane – EynonPenentuan gula cara ini adalah dengan cara menitrasi reagen Soxhlet (larutan CuSO4, K-Na-tartrat) dengan larutan gula yang diselidiki. Banyaknya larutan yang dibutuhkan untuk menitrasi reagen soxhlet perlu distandarisasi dengan larutan standar. Pada titrasi reagen soxhlet dengan larutan gula akan berakhir apabila warna larutan berubah dari biru menjadi tak berwarna. Indikator yang digunakan pada cara ini adalah metilen biru.

Cara Luff SchoorlPada penentuan gula cara ini, yang ditentukan bukannya kupro oksida yang mengendap tetapi dengan menentukan kupri oksida dalam larutan sebelum direaksikan dengan gula reduksi (titrasi blanko) dan sesudah direaksikan dengan sampel gula reduksi (titrasi sampel). Penentuannya dengan titrasi menggunakan Na-Tiosulfat. Selisih titrasi blanko dengan titrasi sampel ekuivalen dengan kupro oksida yang terbentuk dan juga ekuivalen dengan jumlah gula reduksi yang ada dalam bahan atau larutan.

Sumber: http://aslilah.blogspot.com/2013/02/penentuan-gula-total-dan-gula-reduksi.html


tugas 2 uji kuantitatif




Uji Kuantitatif

Untuk penetapan kadar karbohidrat dapat dilakukan dengan metode fisika, kimia, enzimatik, dan kromatografi (tidak dibahas).

1. Metode Fisika
Ada dua (2) macam, yaitu :

a. Berdasarkan indeks bias
Cara ini menggunakan alat yang dinamakan refraktometer, yaitu dengan rumus :
X = [(A+B)C - BD)]
4
dimana :
X = % sukrosa atau gula yang diperoleh
A = berat larutan sampel (g)
B = berat larutan pengencer (g)
C = % sukrosa dalam camp A dan B dalam tabel
D = % sukrosa dalam pengencer B

b. Berdasarkan rotasi optis
Cara ini digunakan berdasarkan sifat optis dari gula yang memiliki struktur asimetrs (dapat memutar bidang polarisasi) sehingga dapat diukur menggunakan alat yang dinamakan polarimeter atau polarimeter digital (dapat diketahui hasilnya langsung) yang dinamakan sakarimeter (http://food4healthy.wordpress.com/2008/10/11/analisis-karbohidrat/ 2009).
Menurut hokum Biot; “besarnya rotasi optis tiap individu gula sebanding dengan konsentrasi larutan dan tebal cairan” sehingga dapat dihitung menggunakan rumus :
[a] D20 = 100 A
L x C
dimana :
[a] D20 = rotasi jenis pada suhu 20 oC menggunakan
D = sinar kuning pada panjang gelombang 589 nm dari lampu Na
A = sudut putar yang diamati
C = kadar (dalam g/100 ml)
L = panjang tabung (dm)
sehingga C = 100 A
L x [a] D20 

2. Metode Kimia
Metode ini didasarkan pada sifat mereduksi gula, seperti glukosa, galaktosa, dan fruktosa (kecuali sukrosa karena tidak memiliki gugus aldehid). Fruktosa meskipun tidak memiliki gugus aldehid, namun memiliki gugus alfa hidroksi keton, sehingga tetap dapat bereaksi.
Dalam metode kimia ini ada dua (2) macam cara yaitu :

a. Titrasi
Untuk cara yang pertama ini dapat melihat metode yang telah distandarisasi oleh BSN yaitu pada SNI cara uji makanan dan minuman nomor SNI 01-2892-1992.

b. Spektrofotometri
Adapun untuk cara yang kedua ini menggunakan prinsip reaksi reduksi CuSO4 oleh gugus karbonil pada gula reduksi yang setelah dipanaskan terbentuk endapan kupru oksida (Cu2O) kemudian ditambahkan Na-sitrat dan Na-tatrat serta asam fosfomolibdat sehingga terbentuk suatu komplek senyawa berwarna biru yang dapat diukur dengan spektrofotometer pada panjang gelombang 630 nm.

3. Metode Enzimatik
Untuk metode enzimatis ini, sangat tepat digunakan untuk penentuan kagar suatu gula secara individual, disebabkan kerja enzim yang sangat spesifik. Contoh enzim yang dapat digunakan ialah glukosa oksidase dan heksokinase Keduanya digunakan untuk mengukur kadar glukosa.

a. Glukosa oksidase
D- Glukosa + O2 oleh glukosa oksidase à Asam glukonat dan H2O2
H2O2 + O-disianidin oleh enzim peroksidase à 2H2O + O-disianidin teroksdasi yang berwarna cokelat (dapat diukur pada l 540 nm).

b. Heksokinase
D-Glukosa + ATP oleh heksokinase à Glukosa-6-Phospat +ADP
Glukosa-6-Phospat + NADP+ oleh glukosa-6-phospat dehidrogenase à Glukonat-6-Phospat + NADPH + H+ Adanya NADPH yang dapat berpendar (memiliki gugus kromofor) dapat diukur pada l 334 nm dimana jumlah NADPH yang terbentuk setara dengan jumlah glukosa.

Minggu, 03 Maret 2013

Uji Karbohidrat


A.    Uji Tollens
PERLAKUAN
HASIL PENGAMATAN
1.      Mencampurkan 1 ml AgNO3 kemudian 2 tetes NaOH 10 % ( tetes demi tetes) dan amoniak encer
2.      Mengaduknya kemudian
menambahkan 1 ml larutan sampel ( karbohidrat) mendiamkan selama 5 menit
3.      Memanaskan larutan jika tidak terjadi reaksi
a.       Glukosa
·         1 ml AgNO3 + 2 tetes NaOH 10 % + 5 tetes NH3 encer + 1 ml glukosa (dikocok)
·         Di panaskan sampai terjadi perubahan
·         Didinginkan selama 5 menit


b.      Maltosa
·         1 ml AgNO3 5 %  + 2 tetes NaOH 10 % + 5 tetes NH3 +1ml maltose (dikocok)
·         Dipanaskan sampai terjadi perubahan
·         Didinginkan selama 5 menit
c.       Laktosa
·         1 ml AgNO3 5 %  + 2 tetes NaOH 10 % + 5 tetes NH3 + 1 ml laktosa(dikocok)
·         Dipanaskan sampai terjadi perubahan
·         Didinginkan selama 5 menit
d.      Fruktosa
·         1 mg AgNO3 5 % + 2 tetes NaOH 10% + 5 tetes NH3 + 1 ml fruktosa (dikocok)
·         Dipanaskan sampai terjadi perubahan

·         Didinginkan sekitar 5 menit
e.       Madu
·         1 ml AgNO3 + 2 tetes NaOH + 5 tetes NH3 + 1 ml madu (dikocok)
·         Dipanaskan sampai terjadi perubahan
·         Didinginkan selama 5 menit
f.       Susu
·         1 ml AgNO3 + 2 tetes NaOH + 5 tetes NH3 + 1 ml susu (dikocok)
·         Dipanaskan sampai terjadi perubahan
·         Didinginkan selama 5 menit
g.      Amilum
·         1 ml AgNO3 + 2 tetes NaOH + 5 tetes NH3 + 1 ml amilum (dikocok)
·         Dipanaskan sampai terjadi perubahan
·         Didinginkan sekama 5 menit
h.      Gula
·         1 ml AgNO3  + 2 tetes NaOH + 5 tetes NH3 + 1 ml gula (dikocok)
·         Dipanaskan sampai terjadi perubahan

·         Didinginkan selama 5 menit











·      Larutan berwarna coklat keruh endapan berwarna hitam


·      Larutan berwarna abu-abu keruh, dan endapan hitam ( mengkilat )
·      Larutan bening dan endapan ungu (mengkilat)

·      Larutan keruh dan endapan hitam



·      Larutan berwarna abu-abu keruh dan endapan hitam (mengkilat )
·      Larutan bening keruh kehijauan dan endapan hitam (mengkilat)

·      Larutan berwarna hitam endapan abu-abu

·      Larutan berwarna hijau dan keruh endapan hitam (mengkilat)
·      Warna bening keruh kehijauan dan endapan hitam (mengkilat)

·      Larutan hitam dan  endapan abu-abu

·      Larutan berwarna agak kehijauan dan keruh, endapan hitam (mengkilat)
·      Larutan bening keruh kehijauan dan  endapan hitam (mengkilat)

·      Larutan berwarna hitam  dan endapan hitam

·      Larutan bening kehijauan  dan endapan hitam.
·      Larutan bening agak kehijauan dan endapan hitam (mengkilat)

·      Larutan berwarna coklat dan endapan abu-abu.

·      Larutan berwarna merah bata dan endapan abu-abu
·      Larutan berwarna merah bata dan endapan hitam

·      Putih susu endapan abu-abu


·      Larutan bening endapan ungu

·      Larutan bening endapan ungu


·      Larutan bening dan endapan abu-abu

·      Larutan berwarna hitam dan endapan hitam
( mengkilat )
·      Larutan keruh endapan abu-abu

B.     Uji iodine
PERLAKUAN
HASIL PENGAMATAN
        1)      Memasukkan 3 ml larutan gula masing- masing ke dalam 3 tabung. Kemudian masing-masing ditambahkan 2 tetes iodin . kemudian masing-masing ditambahkan lagi pada :
·      Tabung 1: + 2 tetes air
·      Tabung 2: + 2 tetes HCl
·      Tabung 3 : + 2 tetes NaOH
Dipanaskan
·      Tabung 1: + 2 tetes air
·      Tabung 2: + 2 tetes HCl
·      Tabung 3 : + 2 tetes NaOH
     2)         Memasukkan 3 ml larutan fruktosa  masing- masing ke dalam 3 tabung. Kemudian masing-masing ditambahkan 2 tetes iodin . kemudian masing-masing ditambahkan lagi pada:
·      Tabung 1: + 2 tetes air
·      Tabung 2: + 2 tetes HCl
·      Tabung 3 : + 2 tetes NaOH
Dipanaskan
·      Tabung 1: + 2 tetes air
·      Tabung 2: + 2 tetes HCl
·      Tabung 3 : + 2 tetes NaOH



     3)         Memasukkan 3 ml larutan madu masing- masing ke dalam 3 tabung. Kemudian masing-masing ditambahkan 2 tetes iodin . kemudian masing-masing ditambahkan lagi pada:
·      Tabung 1: + 2 tetes air

·      Tabung 2: + 2 tetes HCl
·      Tabung 3 : + 2 tetes NaOH
Dipanaskan
·      Tabung 1: + 2 tetes air
·      Tabung 2: + 2 tetes HCl
·      Tabung 3 : + 2 tetes NaOH
     4)         Memasukkan 3 ml larutan maltosa  masing- masing ke dalam 3 tabung. Kemudian masing-masing ditambahkan 2 tetes iodin . kemudian masing-masing ditambahkan lagi pada:
·      Tabung 1: + 2 tetes air
·      Tabung 2: + 2 tetes HCl
·      Tabung 3 : + 2 tetes NaOH
Dipanaskan
·      Tabung 1: + 2 tetes air
·      Tabung 2: + 2 tetes HCl
·      Tabung 3 : + 2 tetes NaOH



     5)         Memasukkan 3 ml larutan glukosa  masing- masing ke dalam 3 tabung. Kemudian masing-masing ditambahkan 2 tetes iodin . kemudian masing-masing ditambahkan lagi pada:
·      Tabung 1: + 2 tetes air
·      Tabung 2: + 2 tetes HCl
·      Tabung 3 : + 2 tetes NaOH
Dipanaskan
·      Tabung 1: + 2 tetes air
·      Tabung 2: + 2 tetes HCl
·      Tabung 3 : + 2 tetes NaOH
     6)         Memasukkan 3 ml larutan susu masing- masing ke dalam 3 tabung. Kemudian masing-masing ditambahkan 2 tetes iodin . kemudian masing-masing ditambahkan lagi pada:
·      Tabung 1: + 2 tetes air
·      Tabung 2: + 2 tetes HCl
·      Tabung 3 : + 2 tetes NaOH


Dipanaskan
·      Tabung 1: + 2 tetes air
·      Tabung 2: + 2 tetes HCl
·      Tabung 3 : + 2 tetes NaOH



     7)         Memasukkan 3 ml larutan amilum masing- masing ke dalam 3 tabung. Kemudian masing-masing ditambahkan 2 tetes iodin . kemudian masing-masing ditambahkan lagi pada:
·      Tabung 1: + 2 tetes air
·      Tabung 2: + 2 tetes HCl
·      Tabung 3 : + 2 tetes NaOH
Dipanaskan
·      Tabung 1: + 2 tetes air
·      Tabung 2: + 2 tetes HCl
·      Tabung 3 : + 2 tetes NaOH




     8)         Memasukkan 3 ml larutan laktosa masing- masing ke dalam 3 tabung. Kemudian masing-masing ditambahkan 2 tetes iodin . kemudian masing-masing ditambahkan lagi pada:
·      Tabung 1: + 2 tetes air
·      Tabung 2: + 2 tetes HCl
·      Tabung 3 : + 2 tetes NaOH
Dipanaskan
·      Tabung 1: + 2 tetes air
·      Tabung 2: + 2 tetes HCl
·      Tabung 3 : + 2 tetes NaOH
·         larutan kuning pucat     






·         Warna larutan tidak berubah
·         Warna larutan tidak berubah
·         Larutan menjadi bening


·         Warna larutan tidak berubah
·         Larutan bening
·         Larutan bening

·         larutan kuning pucat     






·         Warna larutan tidak berubah
·         Warna larutan tidak berubah
·         Warna larutan semakin kuning


·         Warna larutan tidak berubah
·         Warna larutan kuning pucat
·         Warna larutan jingga


·         larutan kuning pucat






·         Warna larutan tidak berubah
·         Warna larutan tidak berubah
·         Warna larutan semakin kuning



·         Warna larutan tidak berubah
·         Larutan bening
·         Warna larutan orange

·         Larutan kuning






·         Warna larutan tidak berubah
·         Warna larutan semakin kuning
·         Larutan bening


·         Larutan bening
·         Warna larutan kuning pucat
·         Warna larutan kuning tua


·         Larutan kuning






·         Warna larutan tidak berubah
·         Warna larutan kuning pekat
·         Warna larutan kuning pudar


·         Larutan bening
·         Warna larutan kuning pucat
·         Warna larutan kunin

·         larutan berwarna putih susu






·         Warna larutan tidak berubah
·         Warna larutan tidak berubah
·         Terdapat endapan



·         Hijau berubah kuning
·         Warna putih berkurang terbentuk gel
·         Gel menyatu diatas dan warna putih pucat

·         Warna permukaan larutan ungu pekat dan di bawah permukaan bening




·         Warna larutan tidak berubah
·         Warna larutan ungu muda
·         Warna larutan tidak berubah


·         Warna larutan kuning pucat
·         Warna ungu memudar menjadi bening
·         Warna larutan kuning pucat dan terdapat butiran halus berwarna hitam
·         Larutan berwana kuning jernih






·         Warna larutan kuning pucat
·         Warna larutan kuning
·         Warna larutan merah


·         Warna larutan kuning pucat
·         Warna larutan kuning pekat
·         Warna larutan merah



VII.            PEMBAHASAN
                1.            Uji tollens
Uji tollens merupakan salah satu uji yang digunakan untuk membedakan senyawa aldehid dan senyawa keton.
Dalam percobaan ini yang pertama dilakukan adalah membuat Pereaksi tollens yaitu dengan Mencampurkan 1 ml AgNO3 kemudian 2 tetes NaOH 10 % ( tetes demi tetes) sehingga menghasilkan pengoksidasi ringan yaitu larutan basa dari perak nitrat. Untuk mencegah pengendapan ion perak sebagai oksida pada suhu tinggi, maka ditambahkan beberapa tetes larutan amonia, amonia membentuk kompleks larut air dengan ion perak.
Pada praktikum ini menggunakan delapan jenis sampel yang diuji apakah dia termasuk ke dalam senyawa aldehid atau senyawa keton. Sampel-sampel tersebut antara lain Larutan Glukosa, Larutan Fruktosa, Larutan Maltosa, Larutan Laktosa, Larutan Amilum, Larutan Gula, Larutan Madu, dan Larutan Susu. 
Pada percobaan terhadap Larutan gula, larutan maltosa, larutan fruktosa, larutan laktosa, larutan glukosa dan madu pada saat ditambahkan dengan pereaksi tollens terjadi perubahan warna larutan menjadi coklat keruh dan tebentuk endapan berwarna hitam. Kemudian dipanaskan terjadi lagi perubahan yaitu warna larutan abu-abu keruh dan terbentuknya endapan cermin perak pada dinding tabung reaksi dan endapan berwarna kehitaman, setelah larutan di dinginkan warna larutan berubah lagi menjadi bening kehijauan dan endapannya berwarna hitam. Dari pengamatan ini dapat dinyatakan bahwa keenam larutan ini merupakan senyawa aldehid, karena pada dasar tabung reaksi mengkilat yang menunjukkan adanya endapan cermin perak.Endapan cermin perak ini berasal dari Gugus aktif pada pereksi tollens yaitu Ag2O yang bila tereduksi akan menghasilkan endapan perak. Endapan perak ini akan menempel pada dinding tabung reaksi yang akan menjadi cermin perak. Aldehid dioksidasi menjadi anion karboksilat . ion Ag+  dalam reagensia tollens direduksi  menjadi logam Ag. Uji positif ditandai dengan terbentuknya cermin perak pada dinding dalam tabung reaksi . reaksi dengan pereaksi tollens mampu meng ubah ikatan C-H pada aldehid menjadi ikatan C-O. 
Pada percobaan terhadap larutan susu dan amilum pada saat ditambahkan pereaksi tollens terjadi perubahan warna pada susu yang awalnya berwarna putih susu berubah menjadi coklat dan terbentuk endapan abu – abu sedangkan pada amilum yang awalnya bening berubah menjadi warna putih susu dan terbentuk endapan abu –abu, kemudian pada saat dipanaskan warna larutan berubah lagi warna larutan  dan endapan hitam sedangkan pada larutan amilum larutan menjadi bening dan endapan ungu. Pada kedua larutan ini tidak tebentuk endapan cermin perak yang terbentuk hanya endapan berwarna hitam pada susu dan ungu pada amilum.
Dari pengamatan ini dapat dinyatakan bahwa kedua larutan ini termasuk kedalam senyawa keton karena tidak menghasilkan endapan cermin perak. Susu dan amilum tidak dapat membentuk cermin perak karena tidak mempunyai atom hidrogen yang terikat pada gugus karbonnya. Kedua tangan gugus karbonnya sudah mengikat dua gugus alkil sehingga aseton tidak mengalami oksidasi ketika ditambah pereaksi tollens dan dipanaskan.  



2. Uji Iodin

Uji iodin digunakan untuk medeteksi adanya pati ( suatu polisakarida ). Pada percobaan masing – masing larutan sampel ditambahkan dengan 2 tetes iodin, Iodin yang ditambahkan berfungsi sebagai  indikator suatu senyawa polisakarida. Uji Iodin dalam percobaan dilakukan dengan 3 kondisi yaitu kondisi, netral,asam dan basa,yaitu pada masing-masing tabung ditambahkan 2 tetes air pada tabung I ( netral ), 2 tetes HCl pada tabung II ( asam ) dan 2 tetes NaOH pada tabung III ( basa ). Kemudian ketiga tabung tersebut dipanaskan, setelah dipanaskan pada tabung I dengan kondisi netral diperoleh (+2 tetes air) tidak terjadi perubahan warna, dengan basa (+ 2 tetes NaOH) tidak mengalami perubahan  warna (warna tetap keruh) atau dengan kata lain tidak terbentuk ikatan koordinasi antara ion iodida pada heliks. Hal ini disebabkan karena  dengan basa I2 akan mengalami reaksi sebagai berikut:

3 I2 + 6 NaOH → 5 NaI + NaIO3 + 3 H2O

Sehingga pada larutan tidak terdapat I2 yang menyebabkan tidak terjadinya ikatan koordinasi sehingga warna tetap keruh, sedangkan dengan kondisi asam (+ 2 tetes  HCl)  terjadi perubahan warna dari keruh menjadi bening. 
 Pada kondisi asam NaI dan NaIO3 diubah menjadi I2 kembali  oleh asam klorida . Jadi pada kondisi asam-lah memberikan hasil uji terbaik. Dengan reaksi:

5 NaI + NaIO3 + 6 HCl → 3 I2 + 6 NaCl + 3 H2O